Основная статья Содержание
Аннотация
В статье представлен подход по созданию моделей для автоматизации процедуры оценки креативности по тесту Торранса. Проведенное исследование продемонстрировало наилучшие результаты по дообучению модели на базе Swin-base с использованием изображений субтеста 2. Достигнутая точность составила 0,74–0,88 для оригинальности и 0,69–0,82 для разработанности по отдельным типам исходных рисунков. Обучение модели предсказанию уровня оригинальности по названию изображений субтеста 2 посредством дообучения модели на базе Bert продемонстрировало точность 0,79.
Ключевые слова
Детали статьи
Литература
- Маркина Н.В., Матвеева Л.Г. Миннесотские тесты творческого мышления (МТТМ графическая форма). Челябинск: ПсиХРОН, 2004.
- Acar S., Organisciak P., Dumas D. Automated scoring of figural tests of creativity with computer vision // The Journal of Creative Behavior. 2025. V. 59. № 1. Art. e677.
- Bao H., Dong L., Piao S., Wei F. Beit: Bert pre-training of image transformers // arXiv preprint arXiv:2106.08254. 2021.
- Beaty R.E., Johnson D.R. Automating creativity assessment with SemDis: An open platform for computing semantic distance // Behavior Research Methods. 2021. V. 53. № 2. P. 757–780. DOI: https://doi.org/10.3758/s13428-020-01453-w.
- Cropley D.H., Marrone R.L. Automated Scoring of Figural Creativity using a Convolutional Neural Network // Psychology of Aesthetics Creativity and the Arts. 2025. V. 19. № 1. P. 77–86. DOI: 10.1037/aca0000510.
- Cropley D.H., Theurer C., Mathijssen A.S., Marrone R.L. Fit-For-Purpose Creativity Assessment: Automatic Scoring of the Test of Creative Thinking – Drawing Production (TCT-DP) // Creativity Research Journal. 2024. P. 1–16. DOI: https://doi.org/10.1080/10400419.2024.2339667.
- Devlin J., Chang M.W., Lee K., Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding // Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies. 2019. V. 1. P. 4171–4186.
- He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition // Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. P. 770–778.
- Liu Z., Hu H., Lin Y., Yao Z., Xie Z., Wei Y., Ning J., Cao Y., Zhang Z., Dong L., Wei F., Guo B. Swin transformer v2: Scaling up capacity and resolution // Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022. P. 12009–12019.
- Liu Z., Lin Y., Cao Y., Hu H., Wei Y., Zhang Z., Lin S., Guo B. Swin transformer: Hierarchical vision transformer using shifted windows // Proceedings of the IEEE/CVF international conference on computer vision. 2021. P. 10012–10022.
- Oquab M., Darcet T., Moutakanni T., Vo H., Szafraniec M., Khalidov V., Fernandez P., Haziza D., Massa F., El-Nouby A., Assran M., Ballas N., Galuba W., Howes R., Huang P., Li S., Misra I., Rabbat M, Sharma V., Synnaeve G., Xu H., Jegou H., Mairall J., Labatut P., Joulin A., Bojanowski P. Dinov2: Learning robust visual features without supervision // arXiv preprint arXiv:2304.07193. 2023.
- Organisciak P., Acar S., Dumas D., Berthiaume K. Beyond semantic distance: Automated scoring of divergent thinking greatly improves with large language models // Thinking Skills and Creativity. 2023. V. 49. Art. 101356. DOI: 10.1016/j.tsc.2023.101356.
- Panfilova A.S., Valueva E.A., Ilyin I.Y. The application of explainable artificial intelligence methods to models for automatic creativity assessment // Frontiers in Artificial Intelligence. 2024. V. 7. Art. 1310518. DOI: https: 10.3389/frai.2024.1310518.
- Panfilova A.S., Valueva E.A. Deep Learning and Explainable AI for Creativity Scoring in TCT-DP Form B // Psychology. Journal of the Higher School of Economics. 2025. V. 22. № 4. (in press).
- Patterson J.D., Barbot B., Lloyd-Cox J., Beaty R.E. AuDrA: An automated drawing assessment platform for evaluating creativity // Behavior Research Methods. 2024. V. 56. №. 4. P. 3619–3636. DOI: https: 10.3758/s13428-023-02258-3.
- Torrance E.P. The Torrance Tests of Creative Thinking Norms-Technical Manual Figural (Streamlined) Forms A & B. Bensenville, IL: Scholastic Testing Service, 2008.
- Woo S., Debnath S., Hu R., Chen X., Liu Z., Kweon I.S., Xie S. Convnext v2: Co-designing and scaling convnets with masked autoencoders // Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023. P. 16133–16142.
- Zhang H., Dong H., Wang Y., Zhang X., Yu F., Ren B., Xu J. Automated Graphic Divergent Thinking Assessment: A Multimodal Machine Learning Approach // Journal of Intelligence. 2025. V. 13. № 4. Р. 45. DOI: 10.3390/jintelligence13040045.
Литература
Маркина Н.В., Матвеева Л.Г. Миннесотские тесты творческого мышления (МТТМ графическая форма). Челябинск: ПсиХРОН, 2004.
Acar S., Organisciak P., Dumas D. Automated scoring of figural tests of creativity with computer vision // The Journal of Creative Behavior. 2025. V. 59. № 1. Art. e677.
Bao H., Dong L., Piao S., Wei F. Beit: Bert pre-training of image transformers // arXiv preprint arXiv:2106.08254. 2021.
Beaty R.E., Johnson D.R. Automating creativity assessment with SemDis: An open platform for computing semantic distance // Behavior Research Methods. 2021. V. 53. № 2. P. 757–780. DOI: https://doi.org/10.3758/s13428-020-01453-w.
Cropley D.H., Marrone R.L. Automated Scoring of Figural Creativity using a Convolutional Neural Network // Psychology of Aesthetics Creativity and the Arts. 2025. V. 19. № 1. P. 77–86. DOI: 10.1037/aca0000510.
Cropley D.H., Theurer C., Mathijssen A.S., Marrone R.L. Fit-For-Purpose Creativity Assessment: Automatic Scoring of the Test of Creative Thinking – Drawing Production (TCT-DP) // Creativity Research Journal. 2024. P. 1–16. DOI: https://doi.org/10.1080/10400419.2024.2339667.
Devlin J., Chang M.W., Lee K., Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding // Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies. 2019. V. 1. P. 4171–4186.
He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition // Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. P. 770–778.
Liu Z., Hu H., Lin Y., Yao Z., Xie Z., Wei Y., Ning J., Cao Y., Zhang Z., Dong L., Wei F., Guo B. Swin transformer v2: Scaling up capacity and resolution // Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022. P. 12009–12019.
Liu Z., Lin Y., Cao Y., Hu H., Wei Y., Zhang Z., Lin S., Guo B. Swin transformer: Hierarchical vision transformer using shifted windows // Proceedings of the IEEE/CVF international conference on computer vision. 2021. P. 10012–10022.
Oquab M., Darcet T., Moutakanni T., Vo H., Szafraniec M., Khalidov V., Fernandez P., Haziza D., Massa F., El-Nouby A., Assran M., Ballas N., Galuba W., Howes R., Huang P., Li S., Misra I., Rabbat M, Sharma V., Synnaeve G., Xu H., Jegou H., Mairall J., Labatut P., Joulin A., Bojanowski P. Dinov2: Learning robust visual features without supervision // arXiv preprint arXiv:2304.07193. 2023.
Organisciak P., Acar S., Dumas D., Berthiaume K. Beyond semantic distance: Automated scoring of divergent thinking greatly improves with large language models // Thinking Skills and Creativity. 2023. V. 49. Art. 101356. DOI: 10.1016/j.tsc.2023.101356.
Panfilova A.S., Valueva E.A., Ilyin I.Y. The application of explainable artificial intelligence methods to models for automatic creativity assessment // Frontiers in Artificial Intelligence. 2024. V. 7. Art. 1310518. DOI: https: 10.3389/frai.2024.1310518.
Panfilova A.S., Valueva E.A. Deep Learning and Explainable AI for Creativity Scoring in TCT-DP Form B // Psychology. Journal of the Higher School of Economics. 2025. V. 22. № 4. (in press).
Patterson J.D., Barbot B., Lloyd-Cox J., Beaty R.E. AuDrA: An automated drawing assessment platform for evaluating creativity // Behavior Research Methods. 2024. V. 56. №. 4. P. 3619–3636. DOI: https: 10.3758/s13428-023-02258-3.
Torrance E.P. The Torrance Tests of Creative Thinking Norms-Technical Manual Figural (Streamlined) Forms A & B. Bensenville, IL: Scholastic Testing Service, 2008.
Woo S., Debnath S., Hu R., Chen X., Liu Z., Kweon I.S., Xie S. Convnext v2: Co-designing and scaling convnets with masked autoencoders // Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023. P. 16133–16142.
Zhang H., Dong H., Wang Y., Zhang X., Yu F., Ren B., Xu J. Automated Graphic Divergent Thinking Assessment: A Multimodal Machine Learning Approach // Journal of Intelligence. 2025. V. 13. № 4. Р. 45. DOI: 10.3390/jintelligence13040045.




